
a

a

a

a

iv

Acknowledgments

I thank my advisor, Dr. Arun Lakhotia, for his valuable guidance, extraordinary

support, inspiration, and encouragement. He was always there to support during my highs and

lows in the research period. This thesis would never have been conceptualized without his

motivation and the ideas he provided me. My gratitude for him cannot be expressed in a

paragraph.

Special thanks to Pablo Mejia for the expert guidance he provided me throughout the

thesis. I want to thank Suresh Golconda, Amit Puntambekar, and Santhosh Padmanabhan for

reviewing my thesis document and providing constructive comments. Also, I thank other

members of Team CajunBot for their valuable feedback.

Special thanks to Santhosh Padmanabhan, for providing constant support and

encouragement right from my initial days in the country and for sharing every moment of my

joys and disappointments.

I would like to express my thanks to all my friends at Lafayette for all those

memorable times and fun trips.

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Objectives . 2

1.3 Research Contributions . 3

1.4 Significance of the Research . 3

1.5 Organization of Thesis . 4

2 Background and Related Work . 6

2.1 Publish/Subscribe Model . 6

2.2 Client/Server Model . 7

2.3 Message Queues . 8

2.4 Remote Procedure Calls . 8

2.5 UNIX Interprocess Communication Mechanisms 9

2.6 Review of Inter Process Communication Toolkits 9

2.6.1 Object Oriented Toolkit for Inter Process Communication . . 9

2.6.2 Inter Process Communication 10

2.6.3 Real-Time Communications 11

2.6.4 Network Data Distribution System 11

2.6.5 The Neutral Message Language 12

2.6.6 MIRO - Middleware for Mobile Robots 12

2.6.7 Broker - An Interprocess Communication for Multi-Robot

Systems . 13

3 Software Architecture and Design Issues in Distributed Systems 14

3.1 Software Architecture of an Autonomous Ground Vehicle 14

3.2 Onboard Computing System of CajunBot 16

3.3 Design Issues in Distributed Systems 17

4 CBWare . 19

4.1 Overview of CBWare . 19

4.2 CBQueues . 21

4.2.1 The Shared Memory Model 21

4.2.2 Message Queues . 22

4.2.3 Message Format . 23

4.2.4 CBQueues Interface . 23

4.2.5 Interpolation of Data . 25

4.2.6 Utilities for CBQueues . 25

4.3 CBPackets . 26

4.3.1 The Communication Protocol 26

4.3.2 CBPacket Format . 27

4.3.3 Data Marshaling . 30

4.4 XDR Translation Procedure . 31

4.5 Log System of CBWare . 32

4.6 Sending the Messages . 33

4.7 Central Log Server . 34

4.8 Receiving the Messages . 34

4.9 Monitoring Process Status Information 35

4.10 Log Control . 37

5 CBWare Performance . 38

5.1 Performance Measure of CBWare using QoS Metrics 38

5.1.1 Experimental Setup . 39

5.1.2 End-to-End Latency Measurement 39

vii

5.1.3 Bandwidth and Packet Rate Measurement 40

5.1.4 Packet Order . 41

5.2 CBWare’s Network Performance Measure Using Ethereal 42

6 Conclusions and Future Work . 43

References . 45

Appendix . 48

Abstract . 52

Biographical Sketch . 53

viii

List of Tables

1 Relation between Message Size, Bandwidth, and Packet Rate 41

2 Description of the XDR primitives used in scan message type 51

List of Figures

1 The Publish/Subscribe Model . 7

2 Software Architecture of an AGV . 15

3 Onboard Computing System of CajunBot . 16

4 CBWare Architecture . 20

5 Multiple Processes Sharing Memory . 22

6 CBPacket Format . 29

7 XDR Translation Operations . 30

8 End-to-End Latency . 40

1 Introduction

1.1 Motivation

The development of Autonomous Ground Vehicles (AGV) faces a growing complexity with

components distributed across multiple machines, running on heterogeneous environments

connected using various network topologies with widely differing bandwidths. The

computational power required for processing sensor data, fusing the data from various

sensors, and making appropriate navigation decisions in real-time is huge, thereby justifying

the need for distributing the computations across multiple machines.

The need arises for an intermediate agent to facilitate communication among the

different components in the distributed environment so they function as an integrated system.

The term “middleware” refers to a software system that acts as an intermediary between

different application components in a distributed system. The application components, which

may be running on different operating systems, need to communicate with each other

seamlessly, with minimal communication overhead.

The middleware should provide support for various issues that need to be addressed

while developing an autonomous system. For example, in case of an AGV, when two or more

sensors are producing sensor data, it is necessary to fuse data from multiple sensors for the

data to be used by other processes. When two sources generate data at different frequencies, it

may not always be appropriate to use the most recent data from both the sources. Doing so

may lead to the fusion of mutually inconsistent data. Along the same lines, instead of using

the data generated directly by a source, sometimes it is preferred to interpolate the data for the

specific time when data from another source is produced. These capabilities prove to be

crucial in terms of improving the specific abilities of the autonomous vehicle. The middleware

should provide interpolation and consistent data fusion support for these kinds of issues.

In a distributed environment, especially when the system is very large, monitoring the

status of processes on different machines and tracking the messages generated by each

process becomes a tedious and error-prone task. When an autonomous vehicle is in action,

real-time monitoring of the vehicle becomes extremely important and useful to analyze the

behavior of the vehicle. Therefore, the middleware should provide the necessary

functionalities to deliver real-time debugging and monitoring capabilities.

While developing the software system of an autonomous vehicle, logging data

generated by processes running on the vehicle during autonomous runs is essential for

post-analysis of the data. Post-analysis of the data helps in identifying the behavior of the

vehicle during an autonomous run. One of the most important components of the middleware

is a centralized server that is dedicated to logging data, which will be used typically for

post-analysis.

Thus, a middleware must take into account all of these issues and provide the

necessary capabilities to function as an integrated system.

1.2 Research Objectives

The aim of this research is to propose and implement a distributed middleware that provides a

transparent communication infrastructure for processes running on multiple machines to

exchange information. The middleware should provide centralized logging of data and

real-time monitoring and debugging capabilities in a complex distributed environment. It

should satisfy the necessary Quality-Of-Service (QoS) requirements in terms of minimal

communication latency and minimal packet loss.

2

1.3 Research Contributions

The ability for processes running on single or multiple computers to exchange information

seamlessly in a complex distributed environment is critical for the successful operation of

autonomous robots. The middleware module CBWare provides an efficient and transparent

communication infrastructure for information exchange among multiple machines so that the

producers and consumers of data are independent of each other. It supports fusion of data

from multiple sensors with varying frequencies and latencies based on time of production of

the data, thereby ensuring fusion of mutually consistent data. CBWare facilitates remote

real-time monitoring of the system by periodically transmitting the data generated by the

processes over a wireless network.

The thesis deals with the following aspects of the CBWare.

• Exchange information on a single machine.

• Exchange information across multiple machines.

• Exchange information among processes on heterogeneous platforms

• Centralized logging of data for post-analysis

• Centralized debugging capability in a distributed environment.

• Real-time remote monitoring of an autonomous system.

1.4 Significance of the Research

The proposed middleware was used in CajunBot, a six-wheeled AGV developed by the

University of Louisiana at Lafayette for the Defense Advanced Research Projects Agency

(DARPA) Grand Challenge 2005 [1]. As the complexity of the system increased, for example,

3

when additional sensors were added, a single machine could not handle the voluminous data

from various sources. Hence, processing needed to be done in parallel, distributing the

computations on multiple machines. CBWare enabled easy scalability of computational

power by seamlessly distributing the application components on multiple computers. The

sensor (and other data) fusion support provided by CBWare has been an important contributor

in CajunBot’s ability to leverage rough terrain to increase its visibility. The remote real-time

monitoring capability provided by CBWare was extremely useful in debugging and the

real-time visualization of data helped in tuning various algorithms and parameters. The log

data from the central log server was very useful in post-processing and post-analysis of the

behavior of the vehicle. CBWare also facilitated communication among processes on

heterogeneous systems dealing with byte-order differences and endian issues.

1.5 Organization of Thesis

Chapter 2 provides a brief description of the various communication paradigms used for

information exchange among processes. It also discusses the existing middlewares for

real-time distributed systems. Chapter 3 describes the physical architecture of the distributed

system of CajunBot and the distribution of processes on various machines in CajunBot.

Chapter 4 introduces the CBWare architecture, describes CBQueues, an interface used for

inter-process communication on a single machine, discusses CBPackets, an interface used for

exchanging information among multiple machines, and describes the data encoding format

used to convert the data into a machine-independent neutral format so that the data can be

transferred across the network. It also discusses the logging of data to the central log server

and the remote real-time monitoring capability of CBWare. Chapter 5 evaluates the

middleware on various parameters like transmission delay across machines, the order of

packets received on each machine, the bandwidth of the network, and the packet rate.

4

Chapter 6 gives the conclusions and summarizes some limitations of CBWare and potential

future work to address these limitations. The appendix provides translations routines for a

message type used in the CajunBot software system.

5

2 Background and Related Work

Several communication paradigms have been proposed for information exchange among

processes. This section discusses the various communication frameworks that have been used

for Interprocess Communication. It also discusses several Inter Process Communication

toolkits that have been developed over the years, some of which have been developed

specifically for robotics.

The commonly used models for distributed interaction are:

• Shared Memory Model;

• Publish/Subscribe Model;

• Client/Server Model;

• Message Queues;

• Remote Procedure Calls; and

• Unix Interprocess Communication Mechanisms.

CBWare works on the Publish/Subscribe Model and uses a combination of shared

memory and network communication for inter process communication in a distributed

environment. This chapter elaborates on the various models listed above with a detailed

discussion of the Shared Memory Model in Chapter 4.

2.1 Publish/Subscribe Model

In this model as shown in Figure 1, the producers publish data and consumers subscribe to

data they require through a neutral intermediary, known as the “middleware,” so that the

Figure 1: The Publish/Subscribe Model

publishers and subscribers of information are anonymous to each other. The main features of

the Publish/Subscribe Model and some of the research issues have been discussed in [2].

The producers do not know the destination of the data and the consumers are not

aware of the source of the data, thereby achieving decoupling between the publishers and the

subscribers. This decoupling feature is very effective in systems with many-to-many

interactions and increases the scalability of distributed systems. A detailed discussion of the

other communication paradigms and the various dimensions of decoupling can be found

in [3].

2.2 Client/Server Model

In this model, a module (client) sends a request to another module that acts as a server. The

server processes the request from the client and returns the response back to the client. A

server can receive requests from multiple clients. However, this type of information exchange

is not suitable for robotic applications that are time-critical because the client blocks until it

7

receives a response from the server and hence cannot do any useful processing in the time it

waits for a response from the server. The Client/Server Model is also commonly known as the

Request/Response Model.

2.3 Message Queues

Message Queues are a mechanism by which two or more processes exchange information

through a common system message queue. Each message in the queue is given an

identification so that processes can read the required messages. A variable number of

messages, each message of a variable length, can be stored in the Message Queues. The

messages stored in the queues are in First In, First Out (FIFO) order. Some of the commercial

implementations of the Message Queues are IBM’s WebSphere MQ and Microsoft’s Message

Queues.

2.4 Remote Procedure Calls

Remote Procedure Call (RPC) is a protocol through which a process running on one machine

makes a call to a procedure on another machine connected through a network. When a

procedure is invoked on another machine, the parameters of the procedure are passed from the

caller environment to the environment where the procedure is to execute. After execution, the

results are passed back to the caller environment. RPC can also be used by processes that

share the same address space to exchange information. In this scenario, the procedure call will

refer to a procedure that is local to the machine. RPC typically uses the Client/Server model

described in Section 2.2 for information exchange. RPC is a popularly used mechanism in

distributed computing. A detailed description about the implementation of Remote Procedure

Calls can be found in [4].

8

2.5 UNIX Interprocess Communication Mechanisms

Unix offers several mechanisms for Interprocess Communication (IPC). Some of the popular

IPC mechanisms are as follows.

• Signals: Signals are a mechanism employed by a process to raise a signal and deliver it

to another process. The signal may be of any kind, for example, to interrupt another

process from its current execution. The process that receives the signal has a signal

handler routine that handles the received signal and acts appropriately.

• Pipes: Pipes are unnamed files used as I/O channels between two processes, one of

which writes to the pipe and the other reads from the pipe.

• File Locking: In this mechanism, a file is shared among many processes that write the

data that needs to be shared to the file. Write access to the file is synchronized through

locks that can be set on the files.

• Sockets: Sockets are mechanisms that are usually used for communication between two

processes running on two different machines over the network. A socket acts as a

channel through which information exchange takes place between processes.

2.6 Review of Inter Process Communication Toolkits

This section reviews several Inter Process Communication toolkits developed over the recent

years.

2.6.1 Object Oriented Toolkit for Inter Process Communication

The Object Oriented Toolkit for Inter Process Communication (IPT) [5] was developed in

1996 for use in an Unmanned Ground Vehicle [6]. It is an object-oriented, message-passing

9

toolkit designed specifically for robotics. IPT has a centralized server process that performs

two basic functions:

1. Initiates point-to-point connection between modules, and

2. Establishes a consistent mapping between message names and unique message

ID’s.

CBWare also provides the feature of establishing a mapping between message names

and message numbers to ensure consistency across all modules in the distributed system.

Apart from the two functions mentioned above, the IPT server also acts a log repository used

to track down problems in the system. IPT uses TCP/IP Sockets for inter-machine message

passing and Unix Domain Sockets for intra-machine communication. However, when two

modules exist on the same machine, message passing through Unix Domain Sockets is not the

most efficient mechanism to exchange information. In this mechanism, each message must be

sent to every module, even though the same message could reach each module by updating a

single shared memory area. IPT does not provide fault-tolerance in cases when the IPT server,

which is the key element in establishing connections, might fail.

2.6.2 Inter Process Communication

The Inter Process Communication library (CMU-IPC) [7] works on the Publish/Subscribe

model for communication between distributed heterogeneous processes in a large networked

system. It also supports the Client/Server paradigm to exchange information. CMU-IPC is

supported on multiple machine types and various operating systems. It has a centralized

server, which performs the function of message passing between modules. The server also

logs message traffic and other system-wide information.

10

2.6.3 Real-Time Communications

Real-Time Communications (RTC) [8] is a protocol developed to provide fast and reliable

data delivery in real-time applications. RTC uses the Shared Memory model to deliver high

bandwidth data, for example data from the sensors, from one process to another. It uses the

TCP protocol to distribute data between processes on different machines. RTC is not suitable

for time-critical applications where getting most of the data in a timely fashion is more

important than getting all of the data in order. Since RTC uses the TCP protocol for data

transfer, there may be situations where a process could be blocked from doing critical

computations due to the time spent in re-transmitting lost packets. In cases where a process

sends status signals that are not critical to a remote monitoring station (typically through a

wireless network), TCP adds a lot of communication overhead. In such scenarios, UDP is a

better choice for non-critical data transfer since it does not care about retransmission of lost

packets when the wireless network fails. Another problem with RTC is that the packing and

unpacking of the data transferred across the network needs to be done by the processes that

send and receive information. If this conversion of data were done by the RTC protocol, the

processes would spend more time in doing critical computations.

2.6.4 Network Data Distribution System

The Network Data Distribution System (NDDS) [9] works on the Publish/Subscribe model

where the producers and consumers of data are independent of each other. Each processor

runs an NDDS agent that acts a broker for various types of information. The consumers of a

particular information type register with the broker, which sets up direct UDP connection with

the producer(s) of that information type. Although NDDS was primarily designed for

communication among modules connected by a network, it is not suitable for applications

where processes on a single machine want to communicate with each other. In such scenarios,

11

using shared memory for data transfer between processes on a single machine is a better

option. CBWare uses shared memory for interprocess communication on a single machine

and UDP protocol to transfer data across the network.

2.6.5 The Neutral Message Language

The Neutral Messaging Language (NML) [10] uses a combination of shared memory and

UDP based network communication to exchange information in a distributed environment.

Run-time allocation of processes to processors is enabled dynamically by means of a

configuration file that contains the protocol specifications and mapping between processes and

processors. This approach has two problems. When the number of processors increases,

maintaining the configuration file by the user becomes a tedious and error-prone task. Also,

once a message is read, it is deleted from the shared-memory buffer, making it unavailable for

other processes that may want to read the message at a later point of time.

2.6.6 MIRO - Middleware for Mobile Robots

MIRO [11] is a distributed object-oriented framework developed specifically for use in mobile

robots based on CORBA technology [12]. MIRO logs all the data to disk in the form of files

for post-analysis and has the capability to replay the logged data from files in a timely manner.

The receiver of the data cannot distinguish between logged data and data generated in

real-time. This transparent nature of MIRO helps in visualizing live data as well as replaying

data from logged files for post-analysis. CBWare shares this transparency feature with MIRO

and additionally has the capability to sample data used for visualization at specific intervals.

12

2.6.7 Broker - An Interprocess Communication for Multi-Robot Systems

Broker [13] is a framework developed for communication among distributed processes in

robotic systems. There is a centralized server called the “broker” that is responsible for

transferring data in the form of packets between processes. All the communication takes place

in the form of UDP packets sent from the publishers to the server and in turn is sent to all the

subscribers of the data by the server. The server also logs all communications for later

analysis. The Broker framework suffers from a major drawback, namely that the failure of the

broker brings down the whole system since the entire system is dependent on the broker and

there are no point-to-point connections involved. Another problem with the broker network is

that routing of all the messages to the proper destinations involves two hops, from the

publisher to the server and from the server to the subscribers. This becomes a serious

bottleneck in terms of network congestion when the number of processes increases. Broker

does not provide any support for marshaling of network data.

A detailed discussion on the various Inter Process Communication toolkits can be

found in [14]. It also discusses toolkits based on other communication paradigms and gives a

qualitative comparison of the various paradigms. Matteucci [15] provides a compared

analysis of the various Publish/Subscribe middlewares that have been used in robotics.

13

3 Software Architecture and Design Issues in Distributed

Systems

This chapter introduces the need for distributed system in autonomous vehicles. It explains

the onboard computing system and the onboard software architecture of CajunBot. Finally, it

discusses the various design issues involved in dealing with a distributed system.

3.1 Software Architecture of an Autonomous Ground Vehicle

The software system of an AGV consists of various computationally intensive processes, each

of which processes huge amounts of data generated by the onboard sensors and other

hardware required to drive the vehicle. The major software components of an AGV are:

• Obstacle Detector;

• Path Planner;

• Steering Controller;

• Drivers;

• Data Logger; and

• Middleware.

Figure 2 graphically depicts the software architecture of an AGV. The Obstacle

Detector uses the sensor data to detect obstacles and to identify unnavigable regions of the

terrain. The Path Planner gives a path around the obstacles. The Steering Controller generates

commands to drive the vehicle in the path given by the Path Planner. The modules labeled

Obstacle Detection and Path Planner perform the core computations necessary to drive the

Figure 2: Software Architecture of an AGV

vehicle in autonomous mode. Apart from these two components, there are other drivers in the

system that communicate with the hardware devices and convert the data to match the

conventions used in the rest of the system. The Data Logger logs data generated by these

modules to the disk. The Middleware provides the infrastructure for communication among

these distributed modules and allows the various processes to exchange information at ease.

Each of these modules requires a fair amount of CPU time to perform the

computations efficiently. It is difficult to achieve fairness when all these processes run on the

same machine. Adding more sensors to achieve greater granularity of terrain and obstacle data

increases the overall performance of the system, but adds to the computational complexity.

Hence, there is a definite need to distribute the processes across multiple machines and meet

the Quality-of-Service (QoS) requirements. The next section describes the distributed system

architecture of CajunBot, with the distribution of processes on multiple machines.

15

Figure 3: Onboard Computing System of CajunBot

3.2 Onboard Computing System of CajunBot

Figure 3 shows the computing system of CajunBot, which is a collection of four machines.

These machines together provide the necessary computational power required for the software

system of CajunBot. The computers labeled “Obstacle Detection Machine” and “Path Planner

and Steering Machine” are Dell Poweredge 750s. The other two machines, “Disk Logger

Machine” and “NTP Machine,” are Mini-ITX boards.

The sensors are connected directly to the “Obstacle Detection Machine,” which runs

the Obstacle Detection module. This module is responsible for processing the data from the

16

various sensors and computing the terrain and obstacle information. The obstacle information

data are used by the Local Planner and Navigator modules that run on the “Path Planner and

Steering Machine” to compute a path around the obstacles and drive the vehicle in the

planned path. The “Disk Logger Machine” is used for logging data generated from various

processes during a run, typically for post-analysis. The “NTP machine” provides Network

Time Protocol service, a service necessary to synchronize data from multiple sensors and

computers. The system has three networks. The first network connects the Dell Poweredge

computers and the INS. This network is a 5-port Gigabit Ethernet Switch. Since the data

generated from the INS is used by all phases of the processing, its timely availability on all

machines is crucial, justifying a separate network. The second network is through the 16-port

Gigabit Ethernet Switch, which connects all the computers together. The third network,

through the wireless access point, consists of only the disk logger machine on board. The disk

logger transmits data over this wireless network for real-time remote monitoring of the

system, typically from a laptop.

3.3 Design Issues in Distributed Systems

Some of the important design issues to address when dealing with a distributed system are

listed below.

1. System Shutdown: Shutting down the entire distributed system with graceful

termination of all processes.

2. Synchronization: Synchronizing programs and configuration files across all machines.

3. Monitoring Process Status: Monitoring the status of each process running on different

machines.

17

4. QoS Requirements: Meeting the QoS requirements during network communication in

terms of

• Packet Rate;

• Packet Order; and

• Latencies associated with message transmissions.

5. Fault Tolerance: Providing reliability and fault tolerance mechanisms within the system

System Shutdown: CBWare achieves graceful termination of each process by looking

up a lock file generated on each machine during system startup. This file contains the process

ids of all the running processes on each machine associated with the system. All the processes

that have their process ids listed in the lock file on each machine are terminated. The

processes are terminated on each machine in the reverse order in which they were started on

each machine.

Synchronization: It is essential to have the same version of programs and

configuration files on all machines to avoid inconsistent behavior of the system. CBWare

addresses this issue by creating a tarball of the entire system consisting of all the programs

and the configuration files. This tarball is propagated to all the machines at system startup

time. Whenever a change is made to the system, a synchronization check is performed on all

machines during startup and the change is propagated to all machines.

The ways in which CBWare addresses the other issues listed above are discussed in

Chapters 4, 5, and 6.

18

4 CBWare

This chapter provides an overview of CBWare and discusses in detail the design and

implementation of the different components of CBWare. It describes the data marshaling

routines used to encode and decode the network data. It also highlights the specific features of

CBWare that provided for easy debugging and tuning of algorithmic parameters.

4.1 Overview of CBWare

CBWare, which works on the Publish/Subscribe model, is a package for communication

between distributed programs, where the producers and consumers of data are independent of

each other. One of the main design principles of CBWare was that, except for the properties of

data written to or read from CBWare, a module in the system does not need to know anything

about the module that has generated or will consume the data. This decoupling of modules is

central to achieving the design criteria mentioned above.

CBWare provides two types of interfaces. A typed queue interface, CBQueues, for

reading and writing messages, and a typed message packet interface, CBPackets, for only

writing messages. CBQueues provides distributed queues using a combination of shared

memory and UDP communication. The data written to the queues are distributed to other

computers using a UDP broadcast. One of the modules of the CBWare called the “cb logd”

supports logging data to disk and also broadcasts data on the wireless network for remote

real-time monitoring of the system. CBWare enables transmitting data to heterogeneous

environments using the CBQueues interface with a negligible transmission time. Every

message type has a specialized data marshaling routine that deals with byte ordering and

endian issues.

Figure 4 depicts the CBWare architecture with the various modules of the software

Figure 4: CBWare Architecture

20

system distributed on multiple machines. As shown in Figure 4, the local path planner and the

steering modules running on “Path Planner and Steering Machine” communicate with each

other through shared memory using the CBQueues interface. Distributed interprocess

communication is achieved by replicating the shared memory queues of “Obstacle Detection

Machine” on “Path Planner and Steering Machine” through UDP broadcast using the

CBPackets interface. The “cb logd” module running on “Disk Logging Machine” receives all

the data from the UDP broadcast and writes the data to disk. It also transmits the logged data

on a wireless network to the monitoring process running on “Monitoring Machine”(typically a

laptop).

4.2 CBQueues

This section discusses the concept of the Shared Memory model for communication among

processes and the advantages of using shared memory for inter process communication. It

also gives insights on the design of shared memory used in the CajunBot software system and

highlights the specific features of how CBQueues contributed to increasing the visibility of

CajunBot by facilitating fusion of mutually consistent data from various sensors.

4.2.1 The Shared Memory Model

The term “shared memory” refers to a designated area of the memory that will be used

simultaneously by multiple processes in a machine. This means that the data present in the

shared memory area will be shared by several processes and all these processes can modify

the contents of the shared memory area. Figure 5 shows the memory layout of three

processes. Each process has its own code and private data area.

The shared data area as shown in Figure 5 appear to each process as its own address

space. However, the area is shared. If one process writes into the shared data area, the change

21

Figure 5: Multiple Processes Sharing Memory

is reflected in the shared space of the other processes. The shared memory area is

indistinguishable to a process from its own (unshared) memory, except for some initializations

needed to create the shared memory.

4.2.2 Message Queues

The software system of CajunBot consists of several concurrent processes communicating

with each other on a single machine as well as over the network.

The Interprocess Communication on a single machine was built using POSIX Shared

Memory [16]. The Shared Memory model was chosen for interprocess communication on a

single machine in CajunBot due to the fact that shared memory provides an efficient

mechanism to transfer data between processes on the same machine since its communication

overhead is negligible. CajunBot consists of a large amount of data generated from various

sensors and the data needs to be delivered to other processes in a timely manner. Therefore,

we use the speed of shared memory to deliver the high bandwidth data from one process to

another on an individual machine. The network is used to distribute the data to multiple

machines. Though the Shared Memory model has negligible communication cost, there

should be mechanisms to synchronize access to the shared memory to avoid creating race

22

conditions and inconsistent states.

The data that needs to be shared by processes on a single machine is maintained as a

queue of data for each message type in shared memory. The queues are maintained as circular

lists in shared memory. Producers and Consumers write/read using the CBQueues interface.

The queues are implemented using a fixed size array whose space is allocated during

initialization of the shared memory. This method of shared memory is efficient because it

allocates all the space that it will ever use at initialization time. The queues’ buffer space is

allocated once and is simply reused over and over again rather than being dynamically

allocated as needed.

4.2.3 Message Format

All the message types of the CajunBot software system have been defined using the “struct”

format of the C language. In addition to containing information pertaining to the respective

messages, each message has two fields in common, the message name and the time stamp.

The message name is used to determine the type of the message. Every message is time

stamped before publishing the message to the queue. Time stamping every message is crucial

for the data interpolation feature provided by the CBQueues. The interpolation feature is

explained in Section 4.2.5.

4.2.4 CBQueues Interface

CBQueues synchronizes access to the shared memory using the following conventions.

1. Each queue can have only one writer, but there is no limit on the number of readers

(Single Writer Restriction).

2. Each reader maintains its own point in the queue.

23

3. Each queue is made long enough such that a fast producer (writer) and a slow reader

(consumer) can function together, without the producer clobbering the memory space

that a reader is still reading. This may, however, require that the reader read the most

recently written data, not the record after the most recently read.

The “Single Writer (Producer) Restriction” ensures that when the shared memory is

replicated on other machines, data in each distributed queue can be temporally ordered on the

time the data were produced. If multiple producers of similar type of data exist, such as

multiple LIDARs, a separate queue is maintained for each producer.

CBQueues provide the following interfaces to access a message queue.

• Reading the most recent message in the queue: This interface provides the message

at the head of the queue which is also the most recently written message. This method

will block if there is no message at the head, which may occur if no writer has been

created for the queue or if the writer has not placed any message in the queue at all.

• Reading the next message from queue: This interface provides the subsequent

message in the queue, if available. If there is no next message, because the reader has

already read the most recent message, then this interface blocks, waiting until a new

message is added in the queue.

• Checking for new message in queue: To perform an unblocked read of the next

message, the reader may want to check if it is already at the head. If the reader is at the

head of the queue, then there is no message to read.

• Writing a message in the queue: This interface appends a message to the specified

queue.

24

4.2.5 Interpolation of Data

Besides providing the usual interfaces to access a queue as described in the Section 4.2.4,

CBQueues also provides an interface to find in a queue two data items produced around a

particular time. This capability, made possible due to temporal ordering of data in the queues,

provides support for fusion of data from multiple sources based on the time of production.

When two sources generate data at different frequencies, it may not always be appropriate to

use the most recent data from both sources. Doing so may lead to the fusion of mutually

inconsistent data. For instance, when a LIDAR scan is mapped to global coordinates using the

INS data, the resulting coordinates would have significant error if the vehicle experienced a

sharp bump immediately after the scan. In such cases, it is better to fuse data in close

temporal proximity. Along the same lines, instead of using the data generated directly by a

source, sometimes it is preferred to interpolate the data for the specific time when data from

another source are produced. In our LIDAR and INS example, it may be preferred to

interpolate the position of the vehicle to match the time of LIDAR scan.

4.2.6 Utilities for CBQueues

The following utilities have been provided to work with CBQueues and the shared memory.

• Remove a corrupted shared memory: Most often when the shared memory is

corrupted, it causes the programs to crash. The problem often goes away after cleaning

of the shared memory. “cb qclean” is a utility that is used to clean up the shared

memory.

• Read and write to shared memory, for testing: This utility is useful in terms of

testing and debugging problems with the queues in shared memory. It has provisions to

read data from a specific queue in shared memory and also to write to a specific queue

25

in shared memory. Some of the other options that this utility provides are to display

binary output from the queue reader, to have a delay between every successive write

operation to the queues, and an “interp” option to interpolate two data items produced

around a particular time.

4.3 CBPackets

This section provides insight on the design choices that were used to implement CBPackets. It

also discusses in detail on how CBPackets is used to achieve distributed Interprocess

Communication.

4.3.1 The Communication Protocol

Transmission Control Protocol (TCP) and User Datagram protocol (UDP) are the two most

commonly used transport layer protocols for network data transfer between processes on

different hosts. TCP is a connection-oriented protocol that guarantees reliable and in-order

data transfer. UDP is a connectionless protocol that does not guarantee reliability and

ordering of packets. UDP is faster because it does not have the overhead of checking if every

packet arrived and retransmitting lost packets, if any. It is primarily used for time-sensitive

applications where receiving most of the data is more important that receiving all of the data

in order. In systems that involve one-to-many or many-to-many interactions, UDP is required

because of its broadcast and multicast capabilities.

Scenarios in robotic applications where UDP can be used as the communication

protocol are listed below.

• While developing software for an autonomous vehicle, many of the core modules of the

software system running on multiple machines require the global positioning data, the

26

speed data and the heading data from the Inertial Navigation System (INS) for

performing computations. Hence, broadcasting the INS data through the UDP protocol

would be an efficient mechanism to transfer data over the network with negligible

communication overhead rather than establishing point-to-point TCP connections with

every machine in the system. TCP connections with each machine add a lot of overhead

in establishing connections and transferring data.

• In most of the autonomous vehicles, usually one of the processes on the vehicle sends

noncritical status information to a remote monitoring machine through a wireless

network. In such cases, if the status information is sent using TCP, there might be

problems if the wireless network fails. The process tries to re-send the information,

because of the reliability nature of the TCP protocol. So, in such cases, where the

information that is sent over the network is used only for monitoring, UDP would solve

the problem of the wireless network failure since UDP is a connectionless protocol and

never re-sends the messages.

We make a suggestion for designing the system architecture to overcome the

reliability issue involved with UDP. We suggest that processes that need to share critical

information, for example emergency control signals, can be grouped together on the same

machine and communicate using shared memory on a single machine. Hence, the data

transfer becomes reliable.

4.3.2 CBPacket Format

The data broadcast over the network are in the form of UDP Packets. As shown in Figure 6,

the CBPacket consists of a header and the data that needs to be transferred across the network.

The packet header is constructed by the CBWare before sending the packet over the network.

27

This header contains information pertaining to the data.

The header consists of the following fields.

1. Channel: The channel is a 4-byte field, which is a unique integer associated with each

message type to ensure consistency in resolving the type of message on all machines.

The message type is a combination of a unique message ID and a message name. The

mapping of a channel to a message type is done through a map file that consists of the

channel and the message type. All the machines in the system have the same version of

the map file to avoid ambiguities in resolving the type of the messages.

2. Tstamp: This 8-byte field consists of the time at which the packet is sent over the

network. Having the Tstamp in the header is useful in two ways: first, to check for any

out of order packets, second, to calculate the delay associated with every packet while

traveling from the source to the destination.

3. Size: This 4-byte field consists of the size of the data transferred over the network. The

maximum size of a UDP packet that can be sent over the network is 64K.

4. Checksum: The checksum is a 4-byte field to verify the integrity of the data

transmitted over the network. The checksum is a value computed based on the contents

of the data and varies for every packet. This computed checksum is stored in the header

and sent along with each packet. The receiver of the data computes a new checksum of

the received data using the same procedure as in the sending side. The newly computed

checksum on the receiving side is compared to the one sent with the packet. If both

these values are the same, there is a high probability that the data was not corrupted. In

CBWare, the checksum is calculated by performing an XOR operation of every byte in

the data.

28

Figure 6: CBPacket Format

5. Encoding format: The encoding format is a byte that is stored in the header to

determine the type of data being transmitted over the network. For example, the raw

data from INS are just a sequence of bytes, which does not have any fixed structure.

This type of raw data cannot be marshaled because of the varying size and format of the

data. On the other hand, messages, which have a fixed format, need to be marshaled to a

neutral format to be transferred across the network. The encoding format field in the

header is used to identify the type of the data sent and received over the network.

The data portion of the packet is an array of “size” bytes (size of the data is stored in

bytes in the header) where size < (62250 – (size of the header)) (See Figure 6).

A distributed system might contain processes running on heterogeneous platforms

interacting with each other. In such scenarios, the packets that are sent over the network

should be converted from the host format to the network format to deal with byte-ordering

differences of the various machines in the system. There are various data encoding formats

29

Figure 7: XDR Translation Operations

that are used to perform these conversions. Unix Sockets offers specific functions, “htons”

and “ntohs,” that perform the host format to network byte-order conversion and vice-versa,

respectively.

4.3.3 Data Marshaling

Data marshaling is the process of converting data from the local machine format (native

format) into a standard format used for network transfer and retranslating the data received

from the network back to the native form. In a distributed system, there might be processes

running on different machines in heterogeneous platforms. These machines might follow

different byte orderings and alignment strategies. For all these machines to be able to

exchange data over the network, data need to be marshaled before being sent across the

network.

The various data encoding standards that are used to convert data into a

machine-independent format have been described in [17]. eXternal Data Representation

(XDR) is a standard developed by Sun Microsystems [18] for encoding data. It is useful for

transferring data between different computer architectures and has been used to communicate

between diverse machines [19].

The advantage in using the XDR standard to represent data is that it has only one

convention of marshaling the data. Therefore, data are encoded to the “XDR format” before

being sent over the network, and at the receiving side, data are decoded back to the local

30

machine format. This enables adding machines with new computer architectures in the system

without having to modify any of the translation routines. There are two operations that need to

be carried out to marshal the data as shown in Figure 7. The process that sends the data across

the network needs to do an “encode” operation to convert the data into the XDR format and

the process that receives the data from the network needs to perform a corresponding

“decode” operation to convert the data to the native format supported by the machine.

CBWare encodes the UDP Packet into XDR format before sending the packet across the

network. On the receiving side, CBWare decodes the data into the local machine format for

the processes running on that machine to use the data.

4.4 XDR Translation Procedure

XDR provides translation routines for primitive as well as constructed data types in C. A

detailed description on all the translation routines provided by XDR can be found in [20].

A header translation routine has been written to encode and decode the header of the

CBPacket using the routines provided by XDR. In the same manner, a message translation

routine has been written for every message type that is transmitted across the network. Since

XDR represents every data item as a multiple of four bytes, the size of the data in native

format will be different from the size of the data in XDR format. Hence, along with writing a

translation routine for every message type, there should be a corresponding routine written for

every message that calculates the size of the message in XDR format.

The steps involved in the translation (encoding or decoding) of the CBPackets are as

follows.

1. An XDR buffer is created that is large enough to hold the entire CBPacket, and the

direction of translation (encoding or decoding) is specified while creating the buffer.

31

This direction of translation is stored as one of the attributes of the XDR stream.

2. The header is marshaled and added to the XDR buffer using the header translation

routine.

3. The message is marshaled and added to the XDR buffer using the message translation

routine.

The XDR buffer contains the marshaled header followed by the marshaled data. Based

on the direction of translation in the XDR buffer, further operations are carried out with the

buffer. The appendix presents the translation routines that have been written for the “scan”

message (data generated from the LIDAR’s) of CajunBot and also the routines that calculate

the size of the data in XDR format. Whenever a new message is added to the system, a

corresponding message translation routine and a routine that calculates the size of the

message in XDR format should be written for the newly added message.

4.5 Log System of CBWare

The log system of CBWare provides the following features.

1. It maintains a mapping between each message type and a unique integer resulting in a

logical channel for each message type.

2. There might be cases when a particular message type might be broadcast by more than

one process, running on different machines, which may cause network congestion due

to duplication of the same message being broadcast from multiple machines. Based on

the information contained in the log system, each process running on every machine

decides whether to broadcast a particular message type. The log system is defined in

32

such a way that no two machines broadcast the same message on the network. This

avoids redundant data being broadcast on the network.

3. When the system runs for long hours, there is a high probability that the disk to which

data is being logged might run out of disk space. To overcome this problem, the log

system has provisions to save only a sample of the data produced and broadcast on the

network. The log frequency for each message type varies based on the importance of

the message in debugging and post-analysis.

4. The remote real-time monitoring of CajunBot happens through a wireless network. The

variety of the wireless equipment we have tried tends to crash when all the data

produced in the queues on all the machines are sent on the wireless network. To

accommodate for the shortcomings of the wireless network, the log system facilitates

sending only a sample of the data produced in the queues on the wireless network. The

frequency of data sent on the wireless network depends on the importance of the data in

terms of real-time visualization.

The log system of CBWare maintains all the information listed above in a file that is

consistent across all the machines in the system.

4.6 Sending the Messages

Every process apart from writing data to the CBQueues on a machine also uses CBWare to

publish data on the network. “cb publisher,” which is the publisher component of the

CBWare, handles the chores of establishing the UDP network connection through low-level

network programming using sockets, constructing the CBPacket, marshaling the packet into

the XDR format and sending the message in the form of CBPackets across the network.

33

4.7 Central Log Server

The data written to the shared memory queues on every machine should also be logged to disk

for post-analysis and debugging purposes. A central log server is maintained that receives all

the data from the onboard broadcast network and logs the received data to disk. “cb logd,”

which is the central log server, is a daemon that runs on a separate machine as shown in

Figure 4. It receives all the data from the onboard computers and writes data pertaining to

each message on separate files in the disk. The data written to each file is in binary format.

The logging operation has been moved to a separate machine so that a disk failure, a very

likely possibility in a 10-hour run, does not interfere with the autonomous operations of the

vehicle. “cb logd” logs only a sample of the data produced by the onboard processes, if

needed, through the information provided by the log system. Besides logging the data to disk,

“cb logd” also samples the data at specific intervals as per the information contained in the

log system and broadcasts the data on the wireless network for real-time monitoring.

4.8 Receiving the Messages

“cb subscriber,” which is the subscriber component of CBWare, is a daemon that runs on each

machine in the system and receives the broadcast data sent by the “cb publisher.”

“cb subscriber” runs in two modes.

1. Mode 1: When “cb subscriber” runs on the onboard computers, it receives the

messages from the onboard broadcast network. “cb subscriber” only subscribes to and

receives messages that are necessary for the processes running on the respective

machines. It discards the other messages that are not required by the processes on each

machine.

2. Mode 2: When “cb publisher” runs on the laptop used for remote real-time monitoring,

34

it subscribes to and receives all the messages sent on the wireless network by the

“cb logd” process.

“cb subscriber” receives the UDP packets from the network in the encoded form.

Based on the encoding format information present in the header of the packet, the

“cb subscriber” decodes the message appropriately into the local machine format. After

decoding,“cb subscriber” writes the message to the corresponding message type queue in the

local shared memory of the machine using the CBQueues interface, which then can be used

by processes local to that machine. Thus, we replicate the shared memory of one machine on

another. This feature of CBWare to distribute queues over other machines allowed easy

transfer of programs over multiple machines, achieving easy scalability of computational

power, one of the design criteria.

The onboard broadcast address and the wireless broadcast address on which messages

are sent and received is a combination of an IP Address and a port number. The IP Address is

the broadcast address of the respective networks. The port number is a numeric identifier used

to talk to a specific process in the system. These addresses are maintained as environment

variables that are consistent throughout the system.

4.9 Monitoring Process Status Information

When there are many processes distributed across multiple machines in a system, each of

these processes generates several status, warning, or error messages (CbMessages) on their

respective machines. These messages are difficult to track down on each individual machine in

real-time and doing so becomes a tedious task, especially when the system scales to a higher

level. All the message should be logged to the disk for later analysis to identify problems with

the system. To facilitate centralized monitoring and logging of CbMessages from each

process on all machines, CBWare has a special component, the “cbmesg publisher,” which

35

handles the messages generated by each process. Every process uses the “cbmesg publisher”

to publish the CbMessages on the broadcast network just like any other message type in the

system. The only difference with the CbMessages type is that they are not written to the

shared memory queue before publishing the messages on the network. This is due to the

single writer restriction imposed by the CBQueues as discussed in Section 4.2.4. There may

be multiple processes that produce CbMessages, so the single writer restriction does not hold

for CbMessages. The contents of the CbMessage type are listed below.

• Tstamp: This field denotes the time at which the CbMessage was generated.

• Machine Name: Since there are multiple machines that may be generating

CbMessages, this field stores the machine name from which the message originates.

• Program Name: This field denotes the program that generates the CbMessages.

• CbMessage: This field contains the CbMessage.

• Type: This field indicates the type of the CbMessage that was generated, and it can be

one of four types, as listed below:

1. Error Message;

2. Status Message;

3. Warning Message; or

4. Perror Message.

The CBPackets interface provides support for multiple writers and multiple readers.

However, in so doing it cannot support temporal fusion of data. This interface is used only for

logging and real-time monitoring of status, warning, and error messages. Such messages are

36

used in isolation, that is, they are not fused with other messages, and are mostly used for

monitoring, not control.

4.10 Log Control

CBWare has provisions to remotely control the logging process by sending control signals to

the “cb logd” daemon. This control process connects to the logging process using TCP and

sends control signals using a predefined ASCII Protocol.

The control signals can be one of three types, that

1. Enable logging of data;

2. Disable logging of data; or

3. Change the directory on the logging machine in which the data is currently being

logged to the directory specified in the control signal.

To send these signals, the control process needs to know the IP Address of the log

daemon and the port number on which the log daemon is listening for the control signals. The

IP Address and the port number are maintained using an environment variable in the system.

37

5 CBWare Performance

Evaluation of middlewares based on QoS metrics guides the development of middlewares, the

design of system architecture, and network configuration in distributed system applications.

There have been many surveys on QoS metrics for evaluating middlewares, especially for

publish/subscribe middlewares [21], [22]. The most commonly used metrics for evaluation of

middlewares in all these surveys were message delivery guarantee, timely delivery, and

security.

This chapter evaluates the CBWare on the following QoS metrics:

• End-to-End Latency;

• Packet Rate;

• Bandwidth; and

• Packet order.

These metrics are critical and important performance measures for evaluating

middlewares developed for real-time distributed applications.

5.1 Performance Measure of CBWare using QoS Metrics

End-to-End Latency: This is the one-way delay that is associated with a single message

from the time it is sent by the publisher until the time the message is received by the

subscriber. This parameter is also known as the transmission delay.

Packet Rate: Rate refers to the number of packets of a single message that can be transferred

through the network in one second.

Bandwidth: Bandwidth is the data rate that is supported by the network. Typically, it refers to

the amount of data that can be transmitted through the network at any given point in time. It is

normally measured in bytes per second. Bandwidth is also knows as throughput.

For any message that is transmitted across the network under any given condition, the

following relation holds true.

PacketRate = Bandwidth/MessageSize (1)

Packet Order: Order of packets is the order in which the packets of a message arrive at the

destination. While using UDP, packets may arrive out of order. For example, packet A may be

sent before packet B, but B arrives before A at the destination. The Packet Order metric is

used to determine whether there were any out-of-order packets for a given message

transmitted through the network.

We determine a set of QoS requirements in terms of the maximum values allowed for

all the above mentioned metrics which is the limit that is tolerable by the system and that does

not affect the autonomous operations of the vehicle.

5.1.1 Experimental Setup

All the experiments shown below were done on the autonomous vehicle with Dell Poweredge

750 servers onboard connected using a 1 GB Ethernet LAN Switch. The results may vary

based on the type of computers and network configuration.

5.1.2 End-to-End Latency Measurement

We calculate the end-to-end latency for five messages that were transmitted across the

network, with widely varying sizes (in bytes) ranging up to 62000 bytes. The results show

39

Figure 8: End-to-End Latency

that the latency increases as the message size increases. The transmission delay ranges from

0.4 msec to 6 msec for message sizes ranging from 2000 bytes to 62000 bytes, respectively, as

shown in Figure 8. We specify a maximum tolerable transmission delay of 5 msec.

The subscriber of messages on each machine, “cb subscriber,” calculates the

difference between the time in the header of the packet and the packet reception time. The

difference is termed as the transmission delay. The time in the CBPacket header is the time at

which the data was sent across the network. If the transmission delay is over 5 msec, then the

subscriber raises a “cbmesg” alarm (warning CbMessage) for the specific message type that

can be monitored by the monitoring process on the laptop through the wireless network.

5.1.3 Bandwidth and Packet Rate Measurement

Table 1 combines the measurements for Bandwidth and Packet rate and also shows the

relation between Bandwidth, Packet Size, and Message Size according to Equation 1. This

40

Table 1: Relation between Message Size, Bandwidth, and Packet Rate

Message Size (bytes) Packet Rate BandWidth (bytes/second)
2112 1200 2534400
5860 475 2783500
15236 195 2971020
36084 84 3031056

measure indicates that the maximum number of packets supported by CBWare in one second

ranges from 84 packets/second to 1200 packets/second, which is heavily dependent on the

message size.

5.1.4 Packet Order

We determine if there were any packets that arrived out of order for every message. The

ordering is determined by the “cb subscriber” which compares the publish timestamp (the

timestamp in the CBPacket header) of every received packet of a message (current timestamp)

with the publish timestamp of the previously received packet of the same message (last

timestamp). If the current timestamp < last timestamp, then we find an out of ordering of

packets and discard the packet that arrived out of order. The “cb subscriber” also raises a

warning message indicating that there was an out-of-order packet that was received. One of

the main reasons for packets arriving out of order is due to the high levels of jitter experienced

by the network. Our experiments indicate that “cb subscriber” did not report any out-of-order

packets, which leads us to believe that the onboard network configuration on CajunBot, which

is the 1 GB Ethernet LAN used by CBWare to transmit messages, did not experience jitters or

network congestion.

However, the remote monitoring process that runs on the laptop connected through a

wireless network reported many out-of-order packets for every message. Even though the

41

messages that are sent on the wireless network are sampled at a regular interval, the variety of

wireless equipment we have tends to experience high jitters and network congestion when

there are a huge number of messages transmitted from the onboard computers across the

wireless network. In order to increase the efficiency of the wireless access point and the

strength of the wireless signal, we added a wireless signal booster, after which the number of

packets that arrived out of order was reduced by a considerable amount.

5.2 CBWare’s Network Performance Measure Using Ethereal

We used a network monitoring tool, Ethereal [23], to monitor the live network traffic and

analyze the packets that are sent across the network in real-time. Ethereal has a graphical user

interface and offers a variety of filters, for example, to capture data that is sent or received

only on a particular network interface and network port or to capture only UDP traffic across a

network. Ethereal also provides a “Statistics: Summary” option to display the summary

information about a recent capture. We used the Ethereal “Statistics: Summary” option to

measure the packet rate and bandwidth metrics described in Section 5.1.3. Ethereal also has

provisions to capture live data and store the data in a file, which can be used for post-analysis.

The experiments and the measurements of the QoS metrics helped us evaluate the

performance of CBWare with respect to the distributed system architecture and network

configuration and suggested potential improvements that could be made in future.

42

6 Conclusions and Future Work

This thesis developed a middleware for an unmanned autonomous ground vehicle. The

middleware, CBWare, facilitated a transparent communication infrastructure for the different

processes in the software system of the autonomous vehicle to exchange information in a

distributed environment satisfying the QoS requirements. CBWare provides specialized

support for fusing mutually consistent data from multiple sensors present in the autonomous

vehicle. CBWare with its real-time remote monitoring capability has proven to be an excellent

debugging tool in terms of analyzing the behavior of the autonomous vehicle and tuning

algorithmic parameters in real-time. CBWare was developed using a combination of the

shared memory model and network-based UDP broadcast mechanism for communication

among processes running on heterogeneous environments in the distributed system. It works

on the Publish/Subscribe model of communication. The shared memory model was used for

communication among processes running on a single machine. The shared memory on one

machine was distributed to other machines using UDP Broadcast.

The middleware was used in CajunBot, a finalist in the DARPA Grand Challenge

2005. The middleware was evaluated on various QoS metrics like end-to-end transmission

delays, packet rate, and a few others. The results show that there was negligible

communication overhead involved in transferring messages from one machine to another.

Currently CBWare does not provide a fault-tolerance mechanism when any of the

components of the autonomous vehicle fail to function in the required manner. The

fault-tolerance mechanism involves a watchdog process that monitors all the machines in the

system, replicates components at various levels in the system in case of failure, and transfers

processes running on one machine to other machines when the machine fails. These features

enable the system to operate in the specified manner even when there are failures. The

fault-tolerance mechanism would be an important addition to CBWare in the future, which

would prevent the system from going down in case of failure.

The maximum packet size supported by the UDP Protocol is 65535 bytes (64k). In our

current software system of CajunBot, we do not have any messages that are greater than 64k.

In the future, when messages greater than 64k need to be sent across the network, it would be

useful to have a good compression mechanism for the messages or to break down the

messages into smaller packets, transmit them across the network, and reassemble them at the

receiving side. However, the entire message becomes invalid if even one of these smaller

packets is not delivered to the destination. It would also be worth investigating the overhead

involved in breaking down the messages into smaller packets and reassembling them at the

destination.

CBWare currently supports Fedora Core 2.0 and 3.0. We are exploring possibilities

and changes that need to be made to port CBWare to other operating systems. In our attempts

to support CBWare on Windows, we have found out that we cannot port CBWare’s current

model of shared memory from Fedora Core to the Windows Operating System.

44

References

[1] “DARPA Grand Challenge,” http://www.darpa.mil/grandchallenge (last accessed August

15, 2006).

[2] A.Virgillito, “Publish/subscribe Communication Systems: From Models to

Applications,” Doctoral dissertation, Universit‘a degli Studi di Roma “La Sapienza”,

2003.

[3] P.Eugster, P.Felber, R.Guerraoui, and A.Kermarrec, “The Many Faces of Publish

Subscribe,” ACM Computing Surveys, vol. 35, June 2003, pp. 114–131.

[4] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,” ACM

Transactions on Computer Systems, vol. 2, no. 1, Feb 1984, pp. 39–59.

[5] J.Gowdy, “IPT: An Object Oriented Toolkit for Interprocess Communication,” Robotics

Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-96-07,

Mar 1996.

[6] O.Firschien and T.M.Strat, eds., Reconnaissance, Surveillance and Target Acquisition

for the Unmanned Ground Vehicle: Providing Survelliance Eyes for an Autonomous

Vehicle, Morgan Kaufmann Publishers, 1997.

[7] R. Simmons and D. James, IPC – A Reference Manual, version 3.6, Robotics Institute,

Carnegie Mellon University, Aug 2001,

http://www.cs.cmu.edu/afs/cs/project/TCA/ftp/IPC Manual.pdf (last accessed

September 2, 2006).

[8] J. Pederson, “Robust Communication for High Bandwidth Real-Time Systems,”

Master’s thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May

1998.

[9] S.Schneider, G.Pardo-Castellote, and M.Hamilton, “NDDS: The Real-Time

Publish-Subscribe Middleware,” Real-Time Innovations Inc., Tech. Rep., Aug 1999.

[10] W. P. Shackleford, F. M. Proctor, and J. L. Michaloski, “The Neutral Message Language:

A Model and Method for Message Passing in Heterogeneous Environments,”

Proceedings of the World Automation Conference, Maui, Hawaii, June 2000.

[11] H.Utz, S.Sablatnog, S.Enderle, and G.Kraetzschmar, “Miro-Middleware for Mobile

Robot Applications,” IEEE Transactions on Robotics and Automation, vol. 18, Aug

2002, pp. 493–497.

[12] T. Harrison, D. Levine, and D. Schmidt, “The Design and Performance of a Real-Time

CORBA Event Service,” Proceedings of OOPSLA, Atlanta, Oct 1997.

[13] M.McNaughton, S.Verret, and H.Zhang, “Broker: An Interprocess Communication

Solution for Multi-Robot Systems,” IEEE International Conference on Intelligent

Robots and Systems (IROS), Edmonton, Canada, Aug 2005, pp. 1458–1463.

[14] J.Gowdy, “A Qualitative Comparison of Interprocess Communication Toolkits for

Robotics,” Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.

CMU-RI-TR-00-16, June 2000.

[15] M. Matteucci, “Publish/subscribe Middleware for Robotics: Requirements and State of

the Art,” Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano,

Italy, Tech. Rep. Technical Report N 2003.3, 2003.

46

[16] A. D. Marshall, Programming in C, Unix System Calls and Subroutines using C, 1999,

ch. IPC: Shared Memory, http://www.cs.cf.ac.uk/Dave/C/node27.html (last accessed

August 25, 2006).

[17] G. Sadavisam and A.Chitra, “Certain Improvements In Marshalling,” Academic Open

Internet Journal, no. 11, Feb 2004.

[18] “XDR: External data representation standard,” Sun Microsystems Inc., Tech. Rep. RFC

1014, June 1987.

[19] Network Programming Guide - External Data Representation Standard: Protocol

Specification, Sun Microsystems Inc., 1990.

[20] “Library routines for xdr data representation,”

http://docs.sun.com/app/docs/doc/806-7022/6jfu47jvs?a=view (last accessed September

10, 2006).

[21] S. Behnel, L. Fiege, and G. Muhl, “On Quality-of-Service and Publish-Subscribe,” Fifth

International Workshop on Distributed Event-Based Systems (DEBS’06), Lisbon,

Portugal, July 2006.

[22] A. Corsaro, L. Querzoni, S. Scipioni, S. T. Piergiovanni, and A. Virgillito, Quality of

Service in Publish/Subscribe Middleware, IOS Press, 2006.

[23] “Ethereal: Network Protocol Analyzer,” http://www.ethereal.com/docs/eug html/ (last

accessed September 15, 2006).

47

Appendix

This appendix describes the XDR translation routines written for the messages used in

the CajunBot software system. Typically, every time a new message is added to the system,

the designer of the message has to write the translation routine corresponding to the message

using the XDR primitives. Since XDR treats every data item in the message as a multiple 4

bytes, there should be a routine, which calculates the size of the message in XDR format.

Hence, along with the XDR translation routine, an “xdr sizeof datatype” routine also needs to

be written for every message in the system.

Every message in the CajunBot software system is defined using structures in the C

programming language. In this appendix, I describe the “scan” message, which contains data

generated by the LIDAR sensors, their respective XDR translation routines, and the

corresponding “xdr sizeof datatype” routines.

The scan message

The scan message contains information from the onboard LIDAR sensors in the

autonomous vehicle. The scan message has been defined in the CajunBot system as follows.

struct scan data t

{

static char const * const NAME;

double tstamp;

unsigned status;

unsigned num beams;

scan beam t beam[SCAN MAX BEAMS];

};

struct scan beam t

{

float range;

float theta;

};

The XDR Translation routines

For each of the above structures defined for representing the scan message, an XDR

translation routine has been written to marshal the data in XDR format. The XDR translation

routine translates each field in the structure to its corresponding External representation form

and does the vice-versa operation depending upon the direction of translation. The following

procedures are the XDR translation routines for the scan message type.

unsigned xdr translate primitive (XDR *xdr, scan data t *d)

{

if (xdr double (xdr, &d->tstamp)

&& xdr u int (xdr, &d->status)

&& xdr u int (xdr, &d->num beams)

&& xdr vector (xdr, (char *)d->beam, SCAN MAX BEAMS,

sizeof (scan beam t), (xdrproc t)

xdr translate scan beam))

return xdr getpos (xdr);

return 0;

}

49

bool xdr translate scan beam (XDR *xdr, scan beam t *d)

{

if (xdr float (xdr, &d ->range)

&& xdr float (xdr, &d ->theta))

return true;

return false;

}

The “xdr sizeof datatype” routine

unsigned xdr sizeof datatype (scan beam t *d)

{

return (xdr sizeof ((xdrproc t) xdr float, &d->range)

+ xdr sizeof ((xdrproc t) xdr float, &d->theta));

}

unsigned xdr sizeof datatype (scan data t *d)

{

return (xdr sizeof ((xdrproc t) xdr double,

&d->tstamp) +

xdr sizeof ((xdrproc t) xdr u int, &d->status) +

xdr sizeof ((xdrproc t) xdr u int, &d->num beams) +

(SCAN MAX BEAMS * xdr sizeof datatype (d->beam)));

}

50

Table 2: Description of the XDR primitives used in scan message type

XDR Primitives Description
xdr double Translates between a double precision variable,

and its corresponding external representation
xdr u int Translates between an unsigned integer variable,

and its corresponding external representation
xdr vector Translates between a fixed length array,

and its corresponding external representation
xdr float Translates between a float variable,

and its corresponding external representation
xdr getpos Gives the current position in the xdr translation buffer
xdr sizeof Gives the number of bytes required to encode a variable

The “xdr sizeof” primitive returns the number of bytes required to encode the data.

The “xdr sizeof datatype” routines that have been written for the scan message type calculate

the total number of bytes that are required to encode/decode the scan message by applying the

“xdr sizeof” primitive to each field in the scan message structure.

Table 2 lists each of the XDR primitives and a brief description about each primitive

used in the XDR translation routines and the “xdr sizeof” routine for the scan message type.

51

Venkitakrishnan, Vidhyalakshmi. Master of Science Technology, Birla Institute of
Technology and Science, Fall 2004; Master of Science, University of Louisiana at
Lafayette, Fall 2006

Major: Computer Science
Title of Thesis: CBWare - Distributed Middleware for Autonomous Ground Vehicles
Thesis Director: Dr. Arun Lakhotia
Pages in Thesis: 63; Words in Abstract: 239

ABSTRACT

Distributed Real-time Systems are playing a crucial role in many application domains,

especially in robotics. Needs arise in robotics where components within a machine and

components distributed across a network must exchange information seamlessly with minimal

communication overhead, satisfying the Quality-Of-Service (QoS) requirements. The solution

in this case is what is known as a “middleware” that acts as an intermediary between different

application components in a distributed system.

This thesis presents CBWare, a network-based distributed message passing

middleware developed for CajunBot, an unmanned autonomous ground vehicle. The

middleware was developed with the objective of providing a transparent communication

mechanism with real-time monitoring and debugging capabilities and minimal network

communication latencies. CBWare provides specialized support for fusing data from various

sensors arriving at varying frequencies and latencies.

The proposed middleware works on the Publish/Subscribe model such that the

producers and consumers of data are independent of each other. Processes running on the

same machine communicate using queues maintained in a shared memory area. Data written

to the shared memory queues are distributed to other processes on multiple machines using a

UDP Broadcast. The support for fusion of sensor data in CBWare is based on the time of

production of data, thereby ensuring fusion of mutually consistent data. CBWare also

provides capability to sample data at regular intervals to be transferred over the wireless

network, thereby facilitating real-time monitoring and debugging capabilities.

Biographical Sketch

Vidhyalakshmi Venkitakrishnan was born in TamilNadu, India, on May 25, 1983. She

graduated with a Master of Science Technology degree in Information Systems in June 2004

from Birla Institute of Technology and Science, Pilani, India. She entered the Master of

Science program in Computer Science at the University of Louisiana at Lafayette in Fall

2004. Following completion of this degree, Vidhyalakshmi Venkitakrishnan is planning to

pursue a Doctor of Philosophy in the area of Distributed Operating Systems.

